If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-6=6=X1
We move all terms to the left:
X^2-6-(6)=0
We add all the numbers together, and all the variables
X^2-12=0
a = 1; b = 0; c = -12;
Δ = b2-4ac
Δ = 02-4·1·(-12)
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{3}}{2*1}=\frac{0-4\sqrt{3}}{2} =-\frac{4\sqrt{3}}{2} =-2\sqrt{3} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{3}}{2*1}=\frac{0+4\sqrt{3}}{2} =\frac{4\sqrt{3}}{2} =2\sqrt{3} $
| 6(x+4)=2(x+20) | | (-3,4)+(1,-5)=m | | –(4–2x)=2(-3x+14) | | 7(x+2)=5(x+22) | | -8x-(-4x+7)=8+x | | n=145/7 | | -8-(-4x+7)=8+x | | (4x+2)+(2x-1)=(5x+3) | | -8-(-4x+7=8+x) | | 7(x-2)=3(x+14) | | -8-(-4x+7=8+x | | 8(x-0)=6(x+16) | | 30+20x=0 | | 16(x+9)=7(x+90) | | 17(x-17)=-2(x+116) | | 13(x+5)=8(x+35) | | 6(x+3)=10(×+1) | | 33x-13=13x | | -(4-2x)=2(-3x+14) | | 14(x+16)=-2(x+32) | | 11y-32+11y-32=180 | | 16(x-4)=10(x+8) | | x/x/2=12 | | 3x-6(x+2)=15+6x | | 9(x-2)=5(x+34) | | 3x–6(x+2)=15+6x | | 20+8(x-11=-12 | | y/15=7 | | 5-a=29 | | 7x-0.5=3.5+6x= | | 2+(y-5)=24 | | 6h=15h |